Photoperiod interacts with food restriction in performance in the Barnes maze in female California mice.
نویسندگان
چکیده
Food restriction has been reported to have positive effects on cognition. This study examines how another environmental factor, daylength, can alter the impact of food restriction on the brain and behavior. Female California mice (Peromyscus californicus), housed on either long days (16 h of light and 8 h of darkness) or short days (8 h of light and 16 h of darkness), were restricted to 80% of their normal baseline food intake or provided with food ad libitum. Testing in a Barnes maze revealed that the effects of food restriction depended on photoperiod, and that these effects differed for acquisition vs. reversal learning. During acquisition testing, food restriction increased latency to finding the target hole in short-day mice but not in long-day mice. In reversal testing, food restriction decreased latency to finding the target hole in long-day mice but not in short-day mice. Latency to finding the hole was positively and independently correlated with both errors and time spent freezing, suggesting that changes in both spatial learning and anxiety-like behavior contributed to performance. Short days increased hippocampal expression of the synaptic protein, synapsin I, which was reversed by food restriction. Short days also reduced plasma corticosterone levels, but diet had no effect. There was no effect of diet or photoperiod on hippocampal expression of the glial marker, glial fibrillary acidic protein. The present findings suggest that, in female California mice, the differential effects of food restriction on acquisition and reversal learning are photoperiod-dependent. These results justify further testing of the relationship between food restriction and hippocampal synapsin I in the context of spatial learning.
منابع مشابه
Effects of photoperiod and food restriction on the reproductive physiology of female California mice.
Many temperate-zone animals use changes in photoperiod to time breeding. Shorter term cues, like food availability, are integrated with photoperiod to adjust reproductive timing under unexpected conditions. Many mice of the genus Peromyscus breed in the summer. California mice (Peromyscus californicus), however, can breed year round, but tend to begin breeding in the winter. Glial cells may be ...
متن کاملEffect of prenatal immobilization stress on spatial memory, anxiety-like behavior and brain BDNF concentration in the F1 generation male mice
Background and Aim: In this study, we investigated the effect of immobilization stress during pregnancy on the spatial memory, anxiety-like behavior and brain BDNF level in F1 generation male NMRI mice. Materials and Methods: Twenty female pregnant mice were randomly divided into stress and control groups. The stress group received stress using a restraint cylinder (6 cm ID, 20 cm L) 60 min/da...
متن کاملLong-day photoperiod interacts with vasopressin and food restriction to modulate reproductive status and vasopressin receptor expression of male golden spiny mice.
We tested the effects of photoperiod, water and food availability on body mass, reproductive status and arginine vasopressin receptor 1A (Avpr1a) mRNA expression in males of desert-adapted golden spiny mice, Acomys russatus. In Experiment 1, males were acclimated to short-day (SD; 8 h:16 h light:dark) or long-day (LD; 16 h:8 h light:dark) photoperiods with either saline (control) or vasopressin...
متن کاملMemory-enhancing potentials of hydroalcoholic extract of Eragrostis tremula Hochst. exSteud. (Poaceae) in Mice
Background & Aim:Cognitive impairment is one of the age-related mental problems and a typical indicator of neurodegeneration. Eragrostis tremula Hochst. ex Steud. is a commonly used medicinal plant in Nigeria for memory enhancement. This study, therefore, aimed at evaluating the memory-enhancing potential of aqueous ethanolic extract of E. tremula in ...
متن کاملSpatial Learning and Memory in Barnes Maze Test and Synaptic Potentiation in Schaffer Collateral-CA1 Synapses of Dorsal Hippocampus in Freely Moving Rats
Introduction: Synaptic plasticity has been suggested as the primary physiological mechanism underlying memory formation. Many experimental approaches have been used to investigate whether the mechanisms underlying long-term potentiation (LTP) are activated during learning. Nevertheless, little evidence states that hippocampal-dependent learning triggers synaptic plasticity. In this study, we in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 33 2 شماره
صفحات -
تاریخ انتشار 2011